
Static Analysis to Identify Invariants
in RSML Specifications*

David Y.W. Park, Jens U. Skakkebaek, and David L. Dill

Computer Science Department, Gates Building 3A
Stanford University, Stanford, CA 94305, USA.
E-mail: {parkit,jus,dill}flcs.stanford.edu

Abstract. Static analysis of formal, high-level specifications of safety
critical software can discover flaws in the specification that would escape
conventional syntactic and semantic analysis. As an example, specifi-
cations written in the Requirements State Machine Language (RSML)
should be checked for consistency: two transitions out of the same state
that are triggered by the same event should have mutually exclusive
guarding conditions. The check uses only behavioral information that is
local to a small set of states and transitions.
However, since only local behavior is analyzed, information about the
behavior of the surrounding system is missing. The check may conse-
quently produce counterexamples for state combinations that are not
possible when the behavior of the whole system is taken into account. A
solution is to identify invariants of the global system that can be used to
exclude the impossible state combinations. Manually deriving invariants
from designs of realistic size is laborious and error-prone. Finding them
by mechanically enumerating the state space is computationally infea-
sible. The challenge is to find approximate methods that can find fewer
but adequate invariants from abstracted models of specifications.
We present an algorithm for deriving invariants that are used to ex-
clude impossible counterexamples resulting from checking consistency of
transitions in RSML. The algorithm has been implemented in an RSML
prototype tool and has been applied successfully to the static checking
of version 6.04a of the (air) Traffic alert and Collision Avoidance System
(TCAS II) specification.

1 Introduction
Formal, high-level specifications of safety critical software are being advocated
to reveal flaws in software early in the design phase [3,8,10,12]. In contrast to
informal specifications, formal specifications can be checked for wellformedness
beyond trivial syntactic properties [1,6,7,11]. For instance, specifications written
in the Requirements State Machine Language (RSML) [10] should be checked
to ensure that the specification is consistent [9]: two transitions out of the same
state that are triggered by the same event should have mutually exclusive guard-
ing conditions. An inconsistency inadvertently allows for several different imple-
mentations, which may complicate testing, verification, and reuse of the software.

* The research was supported by the Defense Advanced Research Projects Agency
under contract number DABT63-96-C-0097-P00002.

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited
20020411 084

Checking consistency using model checking is infeasible for designs of realistic
size [6]. Instead, the guarding conditions can be converted into logical predicates
and checked for mutual exclusion. We have specifically used the Stanford Validity
Checker (SVC) [2], a decision procedure for a quantifier-free fragment of first-
order logic [11]. The check is more efficient than model checking, since it uses
only behavioral information that is local to a small set of states and transitions.

However, since only local behavior is analyzed, information about the behav-
ior of the surrounding system is missing. The check may consequently produce
counterexamples for state combinations that are not possible when the behavior
of the whole system is taken into account. For example, a purely local check
may report that two transitions can be enabled simultaneously whenever one
component state machine is in state si and another is in state s2. However, a
more global analysis might reveal that this combination of circumstances can
not occur, indicating that the local check has reported a non-existent problem.
A solution is to identify invariants of the global state that can be used to exclude
some of the impossible state combinations. Manually deriving invariants from de-
signs of realistic size is laborious and error-prone. Finding them by mechanically
enumerating the state space is computationally infeasible.

The solution we propose is to find approximate methods that can find fewer
but still sufficient invariants from abstracted models of specifications. Significant
size reductions can be achieved by omitting information in the abstraction pro-
cess. We present an algorithm for deriving invariants that rule out some of the
impossible counterexamples when checking consistency in RSML. The algorithm
has been integrated in an RSML prototype analysis tool and has been applied
successfully to the static checking of part of version 6.04a of the specification of
the (air) Traffic alert and Collision Avoidance System (TCAS II) [10]. It is likely
that the algorithm can be generalized to other variations of statecharts [4,5].

2 Motivating Example

We illustrate our approach with an example. An RSML Component State Ma-
chine (CSM), shown in Figure 1, consists of a set of input variables, a hierarchical
state machine, and a set of output variables. When an external event arrives at
the boundary of the CSM, the state machine executes using the values of the
input variables, assigning new values to the output variables.

As in statecharts, individual states may themselves contain state machines.
A state is active if control resides in that state, and inactive otherwise. The
predicate tn(s) means that state s is active. State Root is of type and, so its
immediate substates A, B, C, D, and E (outlined by dotted lines) must be
active simultaneously if Root is active. State A is of type or, so at most one of
its immediate substates may be active. A basic state has no children.

A transition is annotated with trigger [guard]/output-event and is taken if
and only if its guarding condition is true when its trigger event occurs. If taken,
the transition may generate an output event that triggers other transitions in
the CSM. The guarding conditions are logical expressions over the values of the
input variables and the active/inactive status of the states inside the CSM.

Input Variables:... m:integer

I Root I

^!L_

(al)
x[in(e2)] / y x[...]/y

(a2)

^L

c bl
y[in(a2)] / z

d

J
y[m<0] / z

b2 3

^L_
dl

x[...]/u

(d2)

"> C^ED

C e2

u[...]/nU

~\
z[in(a2)A(m>0)]/nil ^(cl)-^. z[in(b2)A in(e2)] / nil

Output Variables:...

Fig. 1. An RSML component state machine to be checked for consistency.

The CSM executes in supersteps. A superstep begins when an external event
arrives at the boundary of the CSM. The external event begins a chain of inter-
nally generated events that trigger transitions within the CSM. In our example,
external event x triggers transitions in states A and D in parallel. If taken,
these transitions trigger transitions in states B and E. The transition in state B
may, in turn, trigger transitions in state C, concluding the superstep. The event
ordering scheme is shown in Figure 2(a).

Transitions in the CSM are consistent if and only if every pair of transitions
out of the same state with the same trigger event has guarding conditions that
can not be enabled simultaneously. For instance, transitions cl-»c2 and cl-»c3
are inconsistent under the condition in(b2) A in(e2) A tn(a2) A (m > 0) since
both guarding conditions are satisfied. Thus, the local check indicates that the
transitions are potentially inconsistent. In such a situation, we say that the
transitions are locally inconsistent.

Rrsr-| 1 S2 1
A

H-© H
C

1ZH3

0-0
(a) (b)

Fig. 2. (a) Event flow in the CSM. (b) Illustration of source and target completions.

However, a static analysis of a superstep can show that in(a2) and in(b2) can
not be true at the same time, invalidating the inconsistency condition. Assume
that the inconsistency condition holds when the two transitions in state C are
triggered. Given the event tree in Figure 2(a), this assumption implies the follow-
ing. First, predicate (m > 0) must be true from the beginning of the superstep

since it is an input variable. Second, predicate tn(o2) was either true from the
beginning of the superstep, or it recently became true if transition al->a2 was
taken. In either case, predicate in(a2) must be true after transitions in state
A are triggered since this is the last opportunity in which it can be made true
before transitions in state C are triggered. Similarly, predicate in(e2) must be
true after transitions in state E are evaluated.

Finally, predicate in(b2) must be true after state B evaluates. However, a
stronger claim can be made since the guarding condition of transition bl-+b2 is
[(m < 0)]. Since predicate (m > 0) must be true from the beginning of the step,
this transition could not have been enabled and thus predicate in(b2) must also
have been true from the beginning of the superstep.

From the upper branch of the event tree in Figure 2(a) we know that tran-
sitions in state A evaluate before those in B. Therefore, tn(a2) must be true
when transitions in state B are triggered. But this means that transition b2—»bl
with guarding condition [m(a2)] is enabled, making 62 no longer active. This
contradicts the requirement that in(&2) must be true from the beginning of the
superstep. The inconsistency condition is therefore invalidated, and we derive
the invariant: (tn(o2) A (m > 0)) => ->in(b2).

3 RSML
An RSML specification is a collection of CSMs which communicate through
asynchronous message passing. Refer to [10] for a comprehensive description of
the syntax and semantics. We focus on the internal behavior within a CSM and
introduce concepts used later in the explanation of the approach.

3.1 Transitions
The explicit source and destination states of a transition are the states connected
by the tail and head of the transition arrow. In Figure 2(b), the explicit source
state and target state of transition *2 are 62 and S2 respectively.

Due to the hierarchical nature of the states, the explicit source and target
states may not be the only states that are left and entered on a transition. In
Figure 2(b), transition t2 not only leaves state 62, it also leaves 51 and all of its
substates. This is because state SI can not be active when the explicit target
state 52 is active (they are both children of an or state). Similarly, state 52 is
not the only state that is entered. 52 is an and state, so states C and D are also
entered. Since C is an or state and no child state is specified to be the target,
we enter state c\ by default. Default states are indicated by a transition arrow
without a source. Likewise, state d\ is entered by default.

The set of all states that can not be active after taking a transition t is
denoted source-completion(t) and the set of all states that may become active is
denoted target-completion(t). Both sets can be determined statically. Informally,
source-completion(t) is the set of all substates of the highest level state exited
on the transition, and target-completion{t) is the set of default substates and
explicitly targeted substates of the highest level state entered.

Identity transitions may be specified, although they are not shown in the
CSM diagram. They are taken when no other transition out of the state is

enabled. By the RSML semantics used in TCAS II, identity transitions do not
cause any state changes, and their sole purpose is to propagate trigger events.

3.2 Behavior of the CSM
A superstep takes the CSM from one global state to the next, where a global
state is represented by the values of variables and the set of active states in
the hierarchical state machine. A superstep is decomposed into a series of mi-
crosteps. A microstep can intuitively be thought of as a wavefront of transitions
that are taken concurrently, in an arbitrary interleaving. The transitions in each
microstep generate the set of events that trigger the transitions in the subsequent
microstep. Transitions in a microstep are evaluated only after all transitions in
the preceding microstep have been evaluated. An external trigger event from
the environment begins the first microstep. The superstep ends when there is a
microstep in which no more transitions are triggered.

4 Overview of the Algorithm
Given a local inconsistency condition, we look for an invariant that shows that
the condition is unsatisfiable. Since this condition is a conjunction of predicates,
it suffices to show that at least one predicate fails to hold, given the others.

First, the behavior of the CSM is abstracted, resulting in a model delineating
which transitions can be triggered at each microstep. In Backward Pass, we begin
by assuming that the local inconsistency condition holds at the last microstep
(the microstep in which the locally inconsistent transitions are triggered). We
then determine the earliest microstep from which each predicate must hold if it is
to hold at the last microstep. In Forward Pass, we try to establish a contradiction
by showing that some predicate in the inconsistency condition can not hold in the
last microstep given other predicates determined to hold from prior microsteps.
An invariant is formulated from the results of the analysis.

5 The Causality Model
The behavior of the CSM is abstracted as a model called the causality tree that
delineates which transitions can be triggered at each microstep. Figure 3a is the
causality tree for the superstep initiated by external event x in the CSM from
Section 2. A node in the tree represents a set of transitions with the same input
and output triggers. The directed edge into a node represents the trigger event
to transitions associated with the node, and the directed edge out of the node
represents the output event (possibly empty).

Beginning with the external trigger event from the environment node, we
add nodes containing transitions triggered by the event. These new nodes may
have their own output triggers which become directed edges to subsequent nodes
with transitions triggered by them. Nodes are added until all leaves of the tree
have the empty output trigger. Circularities in the event propagation are not
allowed, since they lead to infinite paths in the causality tree. The algorithm
trivially checks for circularities each time a new node is added, and aborts the
tree construction if a circularity is detected.

MICROSTEP 0 i MICROSTEP 1 ! MICROSTEP 2 i MICROSTEP 3

ral-a2l 1 y | f bl-b21 1 z (f cl-c2 Jal-a2l y fbl-b21 z fcl-c21
\a2-alj ■ tt>2-bl} —~1 tcl-c3j

|dl-d2) pr—(let-e2J j—|

Fig. 3. Causality tree for the CSM in Figure 1.

The depth of a node in the tree denotes the microstep number in which
its transitions may be triggered. Hence, grouping all of the nodes in the tree by
their depth effectively determines the set of those and only those transitions that
can be triggered in each microstep. Transitions in states B and E, for instance,
may be triggered simultaneously in microstep 2. Note that the causality tree is a
conservative model: it captures what events may be generated at each microstep,
without information about whether guarding conditions are enabled. Identity
transitions are not included in the model since they are not important to our
analysis. However, they must be considered in the construction of the tree since
they also have output events.

A causality path is a path in the tree from the environment node to the node
with the locally inconsistent transitions. Every trigger in this path must fire if
the locally inconsistent transitions are to be triggered. In Figure 3, there is only
one causality path to transitions in state C, the upper branch. All causality
paths to the node with the locally inconsistent transitions in every causality
tree must be checked. The Backward Pass and the Forward Pass stages of the
algorithm analyze each causality path separately in the context of the causality
tree in which it resides.

6 Backward Pass: Predicate Positioning
Backward Pass begins by assuming that the inconsistency condition holds in the
last microstep of the causality path in which the locally inconsistent transitions
are triggered. It then determines the earliest microstep from which each predicate
must hold if it is to hold at the last microstep. Let V be the set of predicates
in the local inconsistency condition. In our running example from Section 2, the
transitions cl—K:2 and cl—»c3 have guarding conditions that are both enabled
under in{b2) A in(e2) A tn(o2) A (m > 0) so V= {in(b2), m(e2), m(a2), (m > 0)}.

Before proceeding, we introduce the notion of a suspect transition. A transi-
tion t is suspect if and only if it can cause a predicate p to become true.

Suspectit v) = lS(E tar9^-completian(t)
y ' \ s € 80urce-completion(t)

if p — in(s)
if p = -un(s)

For a given predicate, we define its microstep assignment to be the microstep
after which it can safely be assumed to be true if it is true at the last microstep.
Each predicate is initially assigned to the last microstep. Backward pass then
assigns each predicate p to the first preceding microstep that contains a suspect
transition. If no suspect transition exists, p is assigned to microstep zero. This

MICROSTEP 1

• in(a2) —-

MICROSTEP 2

, in(b2)
►in(e2)

MICROSTEP 3

[a2-al j j"~M l b2-blj I—-*1 i cl~c3J I |

ldl-d2| el-e2)

Fig. 4. The solid black lines show the result after the initial predicate assignments. The
dotted line illustrates the reassignment of predicate in(62) to a previous microstep.

is a sound process since a predicate's truth value can only change at a microstep
that contains a suspect transition.

The solid black lines in Figure 4 show the state after all of the predicates
have been assigned. Predicate »n(a2) is assigned to microstep 1 since transition
al->a2 is suspect. Hence, in(a2) can safely be assumed to be true in microsteps
2 and 3. Predicate t'n(&2) can become true in microstep 2, so it can only be safely
asserted in microstep 3. Likewise, predicate tn(e2) is assigned to microstep 2.
Predicate (m > 0) involves an input variable so it must have been true from the
beginning of the superstep (microstep zero).

Next, we determine whether predicates can be reassigned to earlier mi-
crosteps. A predicate p is reassigned if all suspect transitions in its currently
assigned microstep have guarding conditions that are unsatisfiable in the con-
text of predicates assigned to previous microsteps. In such a case, p must have
become true in an earlier microstep. It is thus reassigned to the next preceding
microstep with a suspect transition. The reassignment of predicates is an itera-
tive process since a reassignment may affect the microstep assignments of other
predicates. This process is guaranteed to terminate since the number of preced-
ing microsteps is finite and predicates can only be moved in one direction. The
dotted line in Figure 4 shows the reassignment step. Predicate in(b2) can be re-
assigned because the suspect transition bl-»b2 has guarding condition [(m < 0)]
which is negated by predicate (m > 0) assigned to a previous microstep.

Note that backward pass conservatively considers all of the nodes in the entire
causality tree at each microstep, and not only the transitions triggered in the
node in the causality path. In Figure 4, for instance, m(e2) would be assigned
to microstep zero if we do not consider nodes outside the causality path. This is
not sound since transition el—>e2 may have made it true.

7 Forward Pass: Deriving a Contradiction
In the Forward Pass stage, we try to derive a contradiction based on the predicate
assignments. Beginning with the first microstep, we look for transitions that (1)
must be taken, and (2) falsify a predicate that was determined to be true at
that microstep in the backward pass stage. We will refer to such transitions as
violating transitions.

MICROSTEP 0

. in(b2)

• (m>0)

MICROSTEP 1 ; MICROSTEP 2

environment

i in(a2)

f al-a21
Va2-al/

(dl~d2}

> in(e2)

MICROSTEP 3

b2- bl taken:

VIOLATION!

Fig. 5. Illustration of the Forward Pass stage. Predicate in(a2) enables a transition
from state 62 to 61 violating predicate in(62). (Although transition dl—>-d2 is not ex-
plicitly in the causality path, it is still considered since it is triggered by an event in
the path.)

Unlike backward pass which examines the entire causality tree, forward pass
looks only at the causality path and analyzes transitions triggered by trigger
events in the path. This is because all trigger events in the causality path must
fire in order for the locally inconsistent transitions to be ultimately triggered,
and hence these are the only events that we can safely assume to have occurred.

The procedure for forward pass begins at microstep one and executes the
following steps for each subsequent microstep:

1. Construct set MustHold that consists of all of the predicates assigned to pre-
vious microsteps. These predicates must be true in the current microstep in
order for the local inconsistency condition to be valid. In Figure 5, MustHold
for microstep 2 is {(m > 0), tn(&2), in(a2)}.

2. Construct set EnabledT that consists of transitions triggered in the current
microstep of the causality path and whose guarding conditions are enabled
by asserting predicates in MustHold. In Figure 5, EnabledT for microstep 2
is {b2-»bl} since this transition has guarding condition [in(a2)].

3. For each p € MustHold do
- If p is of type tn(s): If there exists a transition t in EnabledT such that

(1) the predicates in MustHold imply that we are in the source state of
t, and (2) s is a member of source-completion(t), then report violation.

- If p is of type ->»n(s): If (1) predicates in MustHold imply that we are
in the parent state p of s and (2) EnabledT contains transitions from all
child states of p other than s back to s, then report violation.

Note that if p is of type -iin(s), the fact that p, the parent state of s, is
active guarantees that some child state of p other than s is active. Since we
do not know which child state is active, we must ensure that there are enabled
transitions from all child states of p other than s back to s.

In microstep 2 of Figure 5, transition b2-»bl must be taken since (1) predi-
cate in(b2) assigned to microstep 0 implies that we are in the source state of the
transition, and (2) the guarding condition of the transition is satisfied by predi-
cate in(a2) assigned to microstep 1. Transition b2-»bl causes 62 to be inactive
in microstep 3. This invalidates the local inconsistency condition. The constraint

1 Tracked |

Intruder Status Other_Air_Status

(Other_Traffic) ^ ——(Potential_Threat J ! . . . (On_Ground)
1

[Proximate_Traffic j ,* ^(Threat) i (Airborne J

Fig. 6. Threat Detection Logic in CAS.

we can derive for this causality path is [m(o2) A (ro > 0)] =£- -<in(b2). Predicate
(m > 0) is included in the constraint only because it contributes to the reas-
signment of the violated predicate in(b2). We have thus proven by contradiction
that the local inconsistency condition can not hold for this causality path.

8 Deriving the Invariant
Since we must consider all causality paths to the locally inconsistent transitions,
a violation must be found for each path. Otherwise, no invariant can be safely
formulated. Suppose we have the following violation constraints for n causality
paths: (Pi =>■ -ipi,P2 => ->P2,—,Pn =» ~'Pn), where Pi denotes the conjunction
of predicates which once asserted, guarantees the negation of predicate pt for
the ith causality path. The invariant is then the disjunction of the n violation
constraints: (Pi A P2 A... A Pn) =» (-ipi V -^p? V... V -^pn). This invariant applies
only when the trigger event to the locally inconsistent transitions occurs.

9 Application to TCAS II
Our method was applied to a part of the TCAS II ([air] Traffic alert and
Collision Avoidance System) specification version 6.04A written in RSML. It
was used to supplement consistency checking in the Collision Avoidance Sub-
system (CAS). CAS models intruding aircraft and classifies them as one of
Threat, Potential-Threat, Proximate-Traffic, or Other-Traffic. Figure 6 shows
a part of CAS that models the intruding aircraft. The transition bar in state
Intruder-Status is shorthand notation for transitions between any two states.
State Other-AirStatus models the intruding aircraft as either being close to the
ground (state On-Ground), or airborne (hence more of a threat).

Using the Stanford Validity Checker (SVC), we discovered a local inconsis-
tency condition for transitions Proximate-Traffic to Potential-Threat and
Proximate-Traffic to Other-Traffic. It includes, in part, the predicates
in(On-Ground) and ->Other-Alt-Reporting. This means that the intruding air-
craft is not reporting altitude but it is classified as being close to the ground.

By applying the analysis described in this paper, our tool generated the
invariant -1 OtherJilt-Reporting =*■ ->in(On-Ground). This invariant, as well as
another one that was critical in consistency checking the specification, were
found in no more than two seconds using our prototype tool written in LISP.
However, the runtime is an underestimate since we did not fully expand all
causality trees; the entire specification was not available in an electronic format.
The parts that were left unspecified were nevertheless determined to be irrelevant
to our analysis.

10 Discussion
We analyze a conservative approximation of the execution that statically de-
termines all possible changes that can occur in the system at any given time
with any given input. Since the approximation has less information than the
original specification, we may overlook properties that are in fact true of the
specification. On the other hand, the limited size of the approximation makes it
computationally feasible to analyze. The algorithm has been integrated into a
general consistency checking prototype tool. We expect to extend it with other
static analysis tools as they become available.

Acknowledgements
We have benefitted greatly from the collaboration with Mats Heimdahl, Univer-
sity of Minnesota, who has provided us with insights into RSML in general and
comments to an earlier draft of the paper.

References
1. R.J. Anderson, P.Beame, S. Burns, W. Chan, F. Modugno, Notkin D, and J.D.

Reese. Model checking large software specifications. In D. Garlan, editor, Proceed-
ings of the Fourth ACM SIGSOFT Symposium on the Foundations of Software
Engineering (SIGSOFT'96), pages 156-166, October 1996.

2. C. Barrett D.L. Dill and J. Levitt. Validity checking for combinations of theories
with equality. In M. Srivas and A. Camilleri, editors, Formal Methods in Computer
Aided Design (FMCAD), number 1166 in Lecture Notes in Computer Science,
pages 197-201. Springer-Verlag, November 1996.

3. S. Gerhart, D. Craigen, and T. Ralston. Formal methods reality check: Industrial
usage. IEEE Transactions on Software Engineering, 21(2):90-98, February 1995.

4. D. Harel. Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming, 8:231-274, 1987.

5. D. Harel and A. Pnueli. On the development of reactive systems. In K.R. Apt,
editor, Logics and Models of Cone. Systems, pages 477-498. Springer-Verlag, 1985.

6. M. RE. Heimdahl and N.G. Leveson. Completeness and consistency analysis of
state-based requirements. IEEE TSE, 22(6):363-377, June 1996.

7. C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw. Automated consistency checking
of requirements specifications. TOSEM, 5(3):231-261, July 1996.

8. D.N. Hoover and Zewei Chen. Tablewise, a decision table tool. In J. Rushby, editor,
Proceedings of 10th Annual Conference on Computer Assurance (COMPASS '95),
pages 97-108, Gaithersburg, MD, USA, June 1995. IEEE.

9. M. S. Jaffe, N. G. Leveson, M. RE. Heimdahl, and B. Melhart. Software re-
quirements analysis for real-time process-control systems. IEEE Transactions on
Software Engineering, 17(3):241-258, March 1991.

10. N.G. Leveson, M. RE. Heimdahl, H. Hildreth, and J.D. Reese. Requirements spec-
ification for process control systems. IEEE Transactions on Software Engineering,
20(9):694-707, September 1994.

11. D. Y.W. Park, J.U. Skakkebaek, M. P.E. Heimdahl, B.J. Czerny, and D.L. Dill.
Checking properties of safety critical specifications using efficient decision proce-
dures. In Formal Methods in Software Practice, pages 34-43. ACM Press, 1998.

12. D. L. Parnas, G. J. K. Asmis, and J. Madey. Assessment of safety-critical software
in nuclear power plants. Nuclear Safety, 32(2):189-198, April-June 1991.

